

Ministry of higher Education and Scientific Research

The module: Session 3 Duration: 1h. Tissue of the Body (TOB) Lecture No. 1

Epithelial tissue P 2

Module staff : Nawal Mustafa Abdullah

Dr Ghada Lateef (module leader)Dr: Hussien KataiDr. Nada Hashim AlJasimnDr: Ihsan MurdanDr Hameed AbbasDr : Rafid mousaDr Farqad M AlhamadaniDr: Raed JasibDr Ilham M JawadDr: Falih waleedDr Ban M SaaedDr Muntaha Abdul HadiDr Ansam MunadhelDr

- Color Atlas and Text of Histology Sixth edition
- Junqueiras basic histology text _ atlas

For more detailed instruction, any question, cases need help please post to the group of session.

Epithelium

4. Describe the cell adhesion and types

Stratified epithelium : Criteria More than one layer -

- Found in areas of high abrasions e.g: skin , oral cavity
- Cell division occur near the basement membrane pushing older cell toward the surface
- When abrasion happened ,cells lost will be replaced by cells underneath.

(a) Classification based on number of cell layers.

Classification:

According to the <u>shape</u> of the <u>superficial layer</u>:

1- Squamous

2- cuboidal

3- columnar

4- transitional

For each of the following types of epithelia, note: Description Function Location

1

Color Atlas and Text of Histology Sixth edition - Junqueiras basic histology text _ atlas

Types:

Туре	Location	Function	
Stratified squamous	Epidermis Oral cavity and esophagus Vagina	Barrier, protection	
Stratified cuboidal	Sweat gland ducts Large ducts of exocrine glands Anorectal junction	Barrier, conduit	
Stratified columnar	Largest ducts of exocrine glands Anorectal junction	Barrier, conduit	
Transitional (urothelium)	Renal calyces Ureters Bladder Urethra	Barrier, distensible property	

Ministry of higher Education and Scientific Researches

LO2

Stratified squamous epithelium:

Several layers of cells:

- top layer is flat
- bottom layer vary from cuboidal to columnar
- basal layer continually replicate
 <u>protect against abrasions</u>

- Color Atlas and Text of Histology Sixth edition
- Junqueiras basic histology text _ atlas

For more detailed instruction, any question, cases need help please post to the group of session.

<u>(Stratified squamous epithelium</u>)

Description:

Thick membrane

composed of several cell layers; basal cells are cuboidal or columnar and metabolically active; surface cells are flattened (squamous); in the keratinized type, the surface cells are full of keratin and dead; basal cells are active in mitosis and produce the cells of the more superficial layers.

Function: Protects underlying tissues in areas subjected to abrasion.

Location: Nonkeratinized type forms the moist linings of the esophagus, mouth, and vagina; keratinized variety forms the epidermis of the skin, a dry membrane.

Photomicrograph: Stratified squamous epithelium lining the esophagus (285x).

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

A: Stratified squamous epithelium (non keratinized)

• In stratified squamous epithelium the lower cells are roughly polygonal in shape.

- As cells migrate towards the surface they become flattened.
- Found in areas requiring protection such as oesophagus, anal canal and vagina.

Note how cells at the surface are very flattened as opposed to the nearly columnar basal cells. Surface cells are continuously lost and replaced by cell division in deeper layers

B) Keratinized stratified epithelium:

-Description:

variety forms , Its cells form many layers , and the cells closer to the underlying connective tissue are usually cuboidal or low columnar
 The cells become irregular in shape and flatten as they accumulate keratin in the process of keratinization

 moved progressively closer to the surface where they become thin <u>Functions</u>:

- contains protein keratin. waterproof,
- resistant to friction, helps repel bacteria.
- metabolically inactive squamous, keratin lacking nuclei
- this surface layer of cells helps protect against water loss across this epithelium

Location:

-found mainly in the **epidermis of skin**.

Stratified squamous keratinized epithelium

2)Stratified cuboidal epithelium

- Desciption:

Quite rare in body consists of several layers of cells in which the top layer is cub shaped

- Function:

is mainly **protective**.????

Location:-

Testis tubules; vesicular (Graafian) follicles of ovary.

Ducts of sweat glands; sebaceous glands mammary glands

UNIVERSITY OF BASRAH AL-ZAHRAA MEDICAL COLLEGE

Ministry of higher Education and Scientific Researches

<u>3- Stratified columnar epithelium :</u>

Criteria

Desciption:

- Rare

Several layers of cells in which the top layer is rectangular

- Basal layer cells are short irregular and poly hydral

Function

Secretion and protection

Location

Conjuctiva ,lining of the eye lids

Small amounts in pharynx, male urethra, and lining some glandular ducts

Also occurs at transition areas between two other types of epithelia

Ministry of higher Education and Scientific Researches

Transitional epithelium

Description:

Resembles both Resemble both stratified squamous and stratified cuboidal, Basal cells are cuboidal or columnar surface, cells have dome shaped or squamous like, depending on degree of organ stretch

Function:

Stretches readily and permits distension of urinary organ by contained urine

Location: Lines the ureters, urinary bladder and part of urethra

4. Transitional epithelium

Photomicrograph: Transitional epithelium lining the urinary bladder, relaxed state (360X); note the bulbous, or rounded, appearance of the cells at the surface; these cells flatten and become elongated when the bladder is filled with urine.

Transitional epithelium

- When bladder is **empty** the superficial layer has umbrella cells
 - When bladder is **full** the •
 - Urothelium is thinner and umbrella cells are flatter

UNIVERSITY OF BASRAH **AL-ZAHRAA MEDICAL COLLEGE**

Ministry of higher Education and Scientific Researches

Relaxed bladder

Modification of epithelial structure

Def:

surface projections from cells which permit movement of materials / objects over the surface of the epithelium.

Thin epoxy section of the trachea showing cilia (C) on a pseudostratified columnar epithelium (arrows). Note how the goblet cells (G) between the epithelial cells lack cilia.

Microvill

Microvilli (MV):

- are finger-like <u>projections</u> from the <u>apical</u> surface of (usually columnar) epithelial cells.
- They <u>increase</u> the surface area of the cell surface and are found in areas involved with <u>absorption</u> such as the <u>small</u> <u>intestine</u> and proximal convoluted tubule of the <u>kidney.</u>

In these two areas they are often referred to as a "brush border"

Microvilli

Stereocilia

Stereocilia:

- are very long, modified microvilli and concerned with <u>absorption</u>.
- They are chiefly found in parts of the <u>male</u> <u>reproductive tract</u>.

Keratinization

Characteristically found in the skin, this adaptation is for protection.

- The thickness of the keratin layer varies
- It is thickest in the sole of the foot and thinnest on the outer surface of the lip.

Keratinized stratified epithelium from the skin. Note how the basal layers are folded forming papillae. These serve to attach the epithelium to the underlying tissues. The mitotic figures; cells lost at the surface of both forms of stratified squamous epithelium are replaced by division of cells in the basal layers.

Cell Adhesion

<u>Cell junctions</u>

Occluding: Prevent diffusion of substances between adjacent cells

<u>Adherent:</u> Link actin filament network between adjacent cells

Focal contacts: Link actin filaments of a cell to extracellular matrix

Desmosomes: Link intermediate filament networks of adjacent cells

<u>Hemidesmosomes</u>: Connect intermediate filament network of a cell to the extracellular matrix

<u>Communicating:</u> Allow selective diffusion of molecules between adjacent cells

	Classification	Major Link Proteins	Extracellular Ligands	Cytoskeleton Components	Intracellular Attachment Proteins	Functions
Occluding Junction (cell-to-cell)	Zonula occludens (tight junction)	Occludins, claudins, JAMs	Occludins, claudins, JAMs in adjacent cell	Actin filaments	ZO-1, ZO-2, ZO-3, AF6, cingulin symplectin ASIP/Povr 3 Rab 36, 13, 8 Sec 4, 6, 8	Seals adjacent cells together, controls passage of molecules between them (permeability), defines apical domain of plasma membrane, involved in cell signaling
Anchoring Junctions (cell-to-cell)	Zonula adherens	E-cadherin- catenin complex	E-cadherin- catenin complex in adjacent cell	Actin filaments	α-Actinin, vinculin	Couples the actin cytoske- leton to the plasma mem- brane at regi- ons of cell- cell adhesion
	Macula adherens (desmosome)	Cadherins (e.g., desmogleins, desmocollins)	Desmogleins, desmocollins in adjacent cell	Intermediate filaments	Desmoplakins, plakoglobins	Couples the intermediate filaments to the plasma membrane at regions of cell-cell adhesion

Anchoring Junctions (cell-to-extracellular matrix)	Focal adhesion	A A A A A A A A A A A A A A A A A A A	Integrins	Extracellular matrix proteins (e.g., fibronectin)	Actin filaments	Vinculin, talin, α-actinin, paxillin	Anchors the actin cytoske- leton to the extracellular matrix, detects and transdu- ces signals from outside the cell
Ancho (cell-to-e	Hemides- mosome		Integrins (α ₆ β ₄ integrin), collagen XVII	Extracellular matrix protein (e.g., laminin-5, collagen-IV)	Intermediate filaments (possible microtu- bules and actin filaments via inter- action with plectin)	Desmoplakin- like proteins, BP 230 plectin, erbin	Anchors the intermediate filaments to the extrace- Ilular matrix
Communicating Junction (cell-to-cell)	Gap junction (nexus)		Connexin	Connexin in adjacent cell	None	Not Known	Creates a conduct between two adjacent cells for passage of small ions and informational micro- molecules

Junctional Complexes

- The EM shows some of the cell / cell junctions found between epithelial cells.
- Where different junctions occur close together as between these two intestinal epithelial cells they are known as junctional complexes.

Thank you

